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LETTER TO THE EDITOR 

An augmented-space recursive technique for the 
calculation of electronic structure of random binary alloys 

Tanusri Saha, Indra Dasgupta and Abhijit Mookerjee 
S N Bose National Centre for Basic Sciences, DB 17, Sector I ,  Salt Lakc City, Calcutta 700064, 
India 

Received 19 January 1994 

Abstract. We present here a computationally feasible and fast technique for obtaining the 
electronic structure of random alloys which allows us to incorporale effects like clustering. 
short-range order and off-diagonal disorder arising out of size mismatch and consequenl lattice 
distortions. The method combines the augmented-space technique with the recursion method 
and the tight-binding LMn. AgPd alloys are studied to illustrate our procedure. 

The linearized tight-binding muffin-tin orbital (TB-LMTO) method, introduced by Andersen 
and Jepsen [ 11, has been widely used to calculate the ab inifio electronic structure of periodic 
solids. Recently the method has been successfully employed to study structures without 
perfect translational symmetry, such as substitutionally disordered alloys, surfaces, interfaces 
and others. Until recently, almost ail of the work on substitutionally disordered alloys has 
been based on mean field approaches, the most successful amongst these being the coherent 
potential approximation (CPA). Recently Kudrnovskf and Drchal [2] have demonstrated that 
the TB-LMTO-CPA can, in a large class of alloy system, accurately describe the electronic 
suucttue of random alloys, both metallic and semiconducting, and disordered surfaces. 
The self-consistency involved in the solution of the CPA equation is not Uivial and one 
has to invoke subtle mathematical procedures to ensure proper convergence. Moreover 
since the CPA is a single-site approximation, it has been pointed out time and again that 
it cannot take into account the problems like lattice relaxation and local stresses involving 
angular distortions and also short-range order. These lead to off-diagonal disorder in the 
Hamiltonian which cannot be aeated in either an additive or multiplicative form, which 
reduces it to an equivalent diagonal disorder problem. Recently Singh and Gonis [3] 
have criticized the TB-LmO-CPA proposed by Kudmovskf and Drchal on the grounds that 
ensemble or configuration averaging involved in their method did not properly take into 
account the multi-site nature of the TB-LMTO basis functions resulting in an inconsistency 
in the ensemble-averaged Green function. Although these authors try to circumvent this 
difficulty by making a pure-L approximation for the site diagonal linearized muffin-tin 
orbitals (LMTOs), the fact remains that, by its very nature, the TE-LMTO formalism involves 
multisite summations. 

There have been attempts at self-consistent cluster generalizations of the CPA [4] to 
include clusters and short-range order, but their applications to date have been restricted to 
model systems. 

An alternative and general approach to configuration averaging was proposed earlier [5 ] .  
This augmented-space formalism (ASF), although acknowledged as a powerful technique, 
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has not found application except in simple, model systems. The main diffculty in its 
implementation is the enormous rank of the configuration spacei and how to handle 
calculations on it. The purpose of this communication is to propose and implement a 
new method which is based on the ASF coupled with the recursion method of Haydock et a1 
[6].  We shall handle the recursion on the full augmented space by reducing the Hamiltonian 
using the point group symmetries of the underlying real lattice and the larger symmetries in 
the configuration part of the augmented space arising out of the homogeniety of disorder. 
It was shown earlier by Gallagher [IO] that if we start recursion with a state belonging to 
an irreducible subspace of a Hilbert space, subsequent recursion always stays within this 
subspace. This allows us significant reduction in rank of the required subspace and makes 
this method practically feasible. Further, this method retains the herglotz properties of the 
configuration-averaged Green function.’The coupling to the recursion method allows effects 
of quite large clusters to be taken into account. Since the recursion method is intrinsically 
multisite, off-diagonal disorder and the multisite nature of the LWOS is not a problem. Full 
charge self-consistency is a part of the method and we do not have to resort to the not 
completely satisfactory arguments of Kudmovskf and Drchal [2]. 

The starting point of our analysis is the most localized, sparse tight-binding Hamiltonian 
derived systematically from the L M M A S A  theory and generalized to random alloys. given 
by 

*1/2 a -1p H ~ L , R , L ,  = ~ R L ~ R R ~ L L ~  + ARLSRL,R~L,AR,L, 

e R L  = c ~ L ~ z R  + c;,(I - n R )  (1) 

Here R denotes the lattice sites and L = ( Im) is the orbital index (for transition metals 
1 < 2) .  C L .  C i L ,  A i ,  and AgL are potential parameters of the constituents A and B 
of the alloy. To start with we take the pure elemental values available [7]. nR are local 
site-occupation variables which randomly take values 0 or 1 according to whether the site is 
occupied by an A atom or not. The screened or tight-binding structure constant S‘ contains 
all the information on lattice geometry, and it is expressed in terms of the conventional 
structure constant S“ and the screened parameter a as 

s” = 9(1+ aSU) =a-’@-] - S0)a-l -a-]. (2) 

The Hamiltonian described by equation (1) is related to the nearly orthonormal representation 
( y )  by the relation 

HY = E,+  hY = E,+  ha - hnooh“ + . . .. (3) 
Usually the expansion is truncated after the second term which is accurate to first 

order in ( E  - E”).  The third term is necessary for systems with wide bands speciaIly 
for s, p states. We have used both the first-order and second-order approximations. For 
very small energy difference calculations in the study of phase diagrams, it is essential to 
go beyond the fist-order approximation to maintain accuracy. Once we have defined the 
Hamiltonian, the electronic structure is described by the configurationally averaged resolvent 
(G(z)) = {(zI - HI-’). 

We note that the Hamiltonian has both diagonal and off-diagonal disorder. We will retain 
this form of the Hamiltonian, to calculate the configuration-averaged resolvent, and will not 
resort to any transformation as is done in single-site approximations [2].  In order to evaluate 
the configuration average we will employ the ideas of the ASF. The ASP puts configuration 

t A system of N sites with binary distribution has a coofiguration space of rank 2”. 
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averaging on the same footing as quantum mechanical averaging by augmenting the Hilbert 
space spanned by the wavefunctions with a configuration space spanned by the different 
realizations of random variables associated with the Hamiltonian. Let us suppose that the 
Hamiltonian describing the system is characterized by a set of random variables [ x i ] .  which 
are independent. The probability density of { x i )  is assumed to have finite moments of all 
orders, so that we may write 

where Mi is an operator defined on the configuration space @i of rank N ,  spanned by the N 
possible realizations of x i .  The augmented-space theorem now states that the configuration 
average of the resolvent G(E, [ x i ] )  may be written as 

g({Mi}) is the same operator function in the augmented space of f i i  as H ( { n i ] )  was 
of n,. IF) = n @ l y ; )  is the configuration ground state in  augmented space. Thus the 
configuration averaging has been reduced to the problem of the ground state matrix element 
in the augmented space @ = H 8 6. For a system with N sites and disorder described by 
binary probability distribution the rank of the space is N x 2". 

The construction of & given the distribution of ni was described in detail earlier. For 
a binary distribution with probabilities x~ and x s ,  is 

(m x A  -9 XB 

The configuration space is characterized by two states, which may be identified with the 
up and down states of an Ising system. The form of I@i suggests that the diagonal 
elements are projection operators while the off-diagonal elements axe spin-jlip operators. 
The configuration states may then be stored extremely efficiently in bits of words and the 
algebra of the Hamiltonian in the configuration space may mirror the multispin coding 
techniques used in numerical work with the Ising model. 

A = C!ulLui~ + SCLI@&bf)tb$)a!LaiL + . . . 
The augmented-space Hamiltonian for the TB-LMTO basis can be expressed as 

i L  it k=t,& k'=t.J. 

, . . SP,,jL,(A! + S A L ~ ~ ~ , , b ~ " b ~ ' ) a j , a j u ,  

SCL = Cf -CF and SAL = A t  -A!. The ut and U are creation and annihilation operators 
in the real space and bt and b are creation and annihilation operators in the configuration 
space, whose diagonal combination resembles Sf and off-diagonal combinations the spin-flip 
s,' in a Ising model. 

It is well known that for a system described by a sparse Hamiltonian the recursion 
method of Haydock, Heine and Kelly is one of the widely used methods to calculate the 
resolvent of the Hamiltonian. This method tridiagonalizes the system Hamiltonian with the 
aid of the recursion relation given by 

bn+ll@n+l) = HI@".) -anl@,t) -bnI$n-l) (6) 
where the a, and bn are the diagonal and off-diagonal elements of the tri-diagonalized 
Hamiltonian. The advantage of this method lies in the fact that the resolvent of the system 
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can be expressed as a continued fraction involving U, and b.. In practice the continued 
fraction is evaluated to a finite number of steps. Haydock [SI has mapped the contribution 
to the continued fraction coefficients to self-avoiding walks on the underlying space. He has 
shown that the dominant contribution comes from walks that wind round the initial starting 
point. This allows us to work only on a finite part of the augmented space: a particular 
sized cluster around the initial starting site. The continued fraction is then complemented 
after the finite number of steps N with a suitable terminator. The terminator reflects the 
asymptotic properties of the continued fraction expansion of the Green function accurately. 
Several terminators are available in the literature and we have chosen to use the terminator of 
Lucini and Nex 191, The advantage of such a termination procedure is that the approximate 
resolvent retains the herglotz properties. It preserves the first 2(N - 2) moments of the 
density of state exactly, This represents the effect of a cluster at distance ( N  - 2) from 
the starting state. It also maintains the correct band widths, band weights and the correct 
singularities at the band edges. It is worth mentioning that for the tight-binding Hamiltonian, 
the recursion method has a workload proportional to the size of the system instead of the 
cubic proportionality of the usual band-structure supercell method, where self-consistency 
is usually achieved in one k-point. From the discussion in the preceeding section, it is 
clear that the recursion method defined on the augmented space allows one to compute 
the configuration-averaged Green function directly. The method does not involve single- 
site approximation or solution of any self-consistent equation as required in the CPA or its 
generalizations. 

In spite of its immense potential the method could not be used for practical calculations 
because of the large dimension of the augmented space?. One of the main contributions of 
the present communication is to devise an efficient method which systematically reduces the 
rank of the augmented space and thereby helps to implement augmented-space recursion for 
any practical calculation. Our method~is based on the symmetry of the Hamiltonian in the 
augmented space and the multi-spin coding technique. Taking the advantage of symmetries 
in a Hamiltonian we can save time and storage in computation. The Hamiltonian described 
by equation (1) contains the information of both the structure of the underlying lattice and 
the symmetry of the orbitals. It has been proved by Gallagher [IO] that if the starting 
state of the recursion belongs to an irreducible representation of the Hamiltonian, then the 
states generated by the process of recursion belong to the same row of the same irreducible 
representation of the Hamiltonian. One needs to retain only those states for the purpose 
of recursion and obtain the same resolution as with all of them. Thus, in computation 
one needs far less storage and time because the dimensionality of the matrix fi is reduced 
drastically. Further, the recursions with the starting states corresponding to the different 
rows of the same irreducible representation are similar. Also the states belonging to the 
different irreducible representations or different rows of the same irreducible representation 
do not mix. In order to facilitate such a calculation the recursion should be done only 
with these states, which are not related to each other by the point-group symmetry of the 
underlying lattice. The symmetry of the orbitals is reflected in  the two-centred Koster-Slater 
integrals, which prohibit the overlap at certain positions dictated by the symmetry of the p 
and d orbitals. Since we will cany out the recursion with a reduced set of vectors obtained 
by the point-group symmetry of the lattice, the overlap at these symmeaic positions does 
not cancel, and we have to explicitly supress their contribution in the Hamiltonian. Once 
the state vectors are identified, the recursion can be performed in the reduced space, with 
suitable weight factors. This method of exploiting the real-space symmetry could easily be 

t N x 2N for a system with N sites and disorder ehmcterized by binary probability distribution. 
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extended to augmented space. As discussed earlier the augmented space is a direct product 
of the real space and the configuration space which are disjoint. As a consequence the 
symmetry operations apply independently to each of them. The configuration space also 
has a very high degree of symmetry. For example, if a site is occupied by an A atom, 
then all the Z configurations in which its Z - 1 neighbours are occupied by A and one by 
B are equivalent. Again the symmetry of the orbitals also rules out the operation of the 
Hamiltonian at certain symmetric positions discussed earlier. Once the vectors are identified 
the recursion can be done in the reduced augmented space. We shall discuss the reduction 
in detail in a subsequent communication [Il l .  We give here a summary of the reduction 
procedure. 

zaoo S,( 
4m L J f L 4  

zaoo S,( 
4m L J f L 4  

ENERGY(Ryd1 
Figure 1. The tolal (solid) and paRial densities of states on Ag (dotted) and Pd (dashed) in 
Ag,Pdl-, alloys. The concentrations are from top to bottom x = 1.0, 0.75, 0.5, 0.25 and 0. 
The vertical lines show the positions of the Fermi energy. 

A basis in the full augmented space for a binary random system is characterized by a 
site on the real lattice, i ,  a string of zeroes and ones at each of the sites which describes a 
configuration and angular momenta labels L = ( I ,  m). This string can be stored in bits of 
a word. The sequence of 1s [ U )  in this string completely describes the configuration and is 
called the cardinality sequence. If Rk is one of W operators which take a given site i on 
the lattice to one of the W equivalent positions on the lattice, then the irreducible subspace 
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Figure 2. Differences in charge densities in an atomic sphere around (a) Pd, between Pd in the 
alloy and pur0 Pd. and (b) A& between Ag in the alloy and pure Ag. 

is spanned by the basis 

Here i‘ is limited to being in the positive octant and the U‘ sequence contains sites only in 
the positive octant. The factor &L is the sign of the Slater-Koster function K L L - ( i ’  - 0) 
which regulates whether the linear combination has s, p or d symmetry with respect to the 
origin. The irreducible representation of the Hamiltonian is 

(8) 

W, and WR are the weights associated with the left and right basis. The weight of a given 
basis is given by W = Er=, &,L. The weight factor y is related to the connectivity of 
the site with respect to its neighbours. Sites within the wtant have y = 1 while sites on 
symmetry planes and lines have weights z 1, determined f” their connectivity. It is 
easy to see that the rank of the irreducible subspace is reduced immensely and allows the 
recursion to become tractable even on quite small computers. 

In figure 1 we present calculations for AgPd alloys with varying concentration of Pd 
from 0 to 1. AgPd is one of the simplest illustrative cases. Its disorder is dominated by the 
diagonal terms in the Hamiltonian. Both constituents have roughly the same d-band widths. 
Since they belong to the same TOW of the Periodic Table, they have very little mismatch 
in atomic sizes. The alloy remains FCC throughout the concentration range, For the pure 

U‘. IolI. LIWIU~I. L‘I = m y  R,s,L,i..,a,L’. 
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metallic cases we have gone up to fifteen levels in the continued fraction to reproduce the 
sharp structure. For the other concentrations we have gone up to seven recursion levels. This 
is sufticient. since disorder smears out the fine structure in the density of states. The results 
are in excellent agreement with earlier LMTO-CPA results of Kudmovskf and Drchal [ 2 ] .  as 
well as the KKR-CPA results of Winter and Stocks [12]. Although, the charge self-consistency 
cycle is a part of this formalism (as in the LMTO and KKR), the CPA self-consistency cycle for 
ench energy is avoided using the recursion and its terminators. Figure 2 shows the difference 
in charge densities in atomic spheres around Pd and Ag, between the charge densities in Pd 
and Ag in the disordered alloy and pure Pd and Ag respectively. There is clear evidence 
of a small charge transfer from the Ag sphere into that of Pd. The main purpose of this 
paper is to demonstrate that the ASF recursion can reproduce known results with controlled 
accuracy. The error analysis of the recursion technique is well established and allows us to 
introduce approximations into the terminator with controlled accuracy. We have shown, in 
our earlier work on model systems, that the ASF handles diagonal and off-diagonal disorder 
with equal facility. We shall now go ahead to apply this method to systems with local 
lattice distortions and short-range ordering, which lead to essential off-diagonal disorder, 
and which cannot be satisfactorily accounted for in the established CPA methods. 
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